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22. Driven Damped Anharmonic Oscillators

Michael Fowler

Introduction

Landau’ next sections (Chapter 6, sections 28,29) address
nonlinear one-dimensional systems.  In
particular, he focusses on driven damped oscillators with nonlinear, but small,
added potential terms.
Using ingenious semiquantitative techniques, he predicts
some unexpected results: for example, a
discontinuity
in the oscillation amplitude on slowly varying the driving frequency at
constant driving
force (and constant damping). He also finds resonances when
the driving frequency is a fraction, for
example a third, of the oscillator’s
natural frequency.

Fortunately, this system is easy to analyze numerically, and
we have an
applet to do just that. The
parameters are set by sliders, and one can
immediately find the large discontinuity in amplitude
(factor of two or so) as
the frequency is slightly changed.  At
the end of this lecture, we show simple
plots of amplitude response to a
constant driving force as the frequency is varied.  These were
found using the applet, the reader
can easily check them, and venture into parts of the parameter
space. The
applet provides a measure of Landau’s (semiquantitative) accuracy, of course
surprisingly good (of order 20% error or less) given the nature of the problem.

It should be
added that this is one area where, thanks to computers, major advances have
been made since
Landau wrote the book, in particular the discovery for some
systems of period doubling and chaos as the driving

force is increased.  We’ve added a lecture (22a) on a
particular system, the driven damped pendulum, a natural
extension of Landau’s
oscillator. This illustrates some of the novel features.  We will follow part of chapter 12 of

Taylor’s
excellent text, Classical Mechanics.
Taylor provides many computer-generated graphs of the pendulum’s
response as
parameters are varied.  We provide applets
that can generate these graphs.   The
reader can easily

use these applets to explore other parameter inputs.

In this lecture, to gain a bit of intuition about these
nonlinear potentials, we’ll begin (following
Landau) with no driving and no
damping: just a particle oscillating in a potential that’s simple
harmonic plus
small  and (positive)  terms.  The
basic questions are, how do these terms
change the frequency of oscillation,
and how does that frequency depend on the amplitude of
oscillation?   The answers will guide us in understanding
how a particle in such a potential will
respond to a harmonic driving term,
plus damping.

Next, we briefly review the driven damped linear oscillator (covered in detail in
lecture 18, this is
really just a
reminder of the notation).  Then we add small cubic and quartic terms.  We present
Landau’s argument  that--above a certain driving force--gradually
increasing the driving frequency
leads at a critical value to a discontinuous drop in the amplitude of
the response, then use an applet
to confirm and quantify his result.

Frequency of Oscillation of a Particle is a Slightly Anharmonic Potential

See the applet illustrating this section.
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Landau (para 28) considers a simple harmonic oscillator with
added small potential energy terms 
.  In leading orders, these terms contribute
separately, and differently, so it’s

easier to treat them one at a time. We’ll first
consider the quartic term, an equation of motion

(We'll always take  positive.)

Writing a perturbation theory expansion (following Landau):

(Standard practice in most books would be to write  with the superscript
indicating the order of
the perturbation--we're following Landau's notation, hopefully reducing
confusion…)

We take as the leading term

with the exact value
of ,
 .  Of course, we don’t know the value of  yet this is
what we’re trying to find!

And, as Landau points out, you can’t just write 
 because that implies motion increasing in
time,

and our system is a particle oscillating in a fixed potential, with no
energy supply. Furthermore, even
if we did somehow have the value of  exactly right, this expression would not be a
full solution to
the equation: the motion is certainly periodic with period ,
but the complete description of the
motion is a Fourier series including
frequencies  an integer, since the potential is no longer
simple harmonic.

Anyway, putting this correct frequency into the equation of
motion  gives a
nonzero left-hand side, so we
rearrange.  We subtract  from both sides to get:

Now putting the leading term  into the left-hand side does give zero: if the equation
had zero on the right hand side,
this would just be a free (undamped) oscillator with natural
frequency  not   This doesn’t look very promising, but keep
reading.

The equation for the first-order correction  is:

Notice that the second term on the right-hand side includes .
This equation
now represents a driving
force on an undamped oscillator exactly at its resonant frequency, so
would
cause the amplitude to increase linearly, obviously an unphysical result, since
we’re just
modeling a particle sliding back and forth in a potential, with no
energy being supplied from outside!
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The key is that there is also
a resonant driver in that first term   

Clearly these two driving terms have to cancel, and this
requirement nails :
here’s how:

so the resonant driving terms cancel provided

Remembering ,
this gives (to this order)

(Strictly,  in the denominator, but that’s a higher order
correction.)

Note that the
frequency increases with amplitude:  the
  potential gives an increasingly stronger
restoring force with amplitude than the harmonic well.  You can check this with the applet.

Now let’s consider the equation for a small cubic perturbation,

This represents an added potential  which is an odd function, so to leading order
it won’t
change the period, speeding up one half of the oscillation and slowing
the other half the same
amount in leading order.  The first correction to the position as a
function of time is the solution of

The solution is

Physically, adding this to the leading term, the particle is
spending more of its time in the softer half
of the potential, giving an
amplitude-dependent correction to its average position.

To get the correction to the frequency, we need to go to the
next order,  Dropping
terms of higher order, the equation
of motion for the next correction is

and with  following Landau,

Again, there cannot be a nonzero term driving the system at
resonance, so the quantity in the
square brackets must be zero, this gives us  

The total correction
to frequency to leading order for the additional small potentials 
 is therefore (they add independently to this
order)
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(the  here being a convenient notation Landau
employs later).

How Good Are These Approximations?

We have an applet that solves this equation numerically, so
it is straightforward to check.

Beginning with the quartic perturbation potential  Landau finds a frequency correction 
 Taking a rather large perturbation  we find from the applet that 

 whereas Landau’s perturbation theory predicts  However, if we
correct Landau’s denominator (as
mentioned above, he pointed out it should be  but said that 
was second-order) the error is very small.

Taking  the formula gives  so less than two
percent error, and for
amplitude 0.2, the effort is less than 0.1%.

Explore with the applet
here.

Resonance in a Damped Driven Linear
Oscillator: A Brief Review

This is just to remind you of what we covered in lecture 18,
before we add anharmonic terms in the
next section.

The linear damped driven oscillator has
equation of motion:

(Following Landau’s notation here note it
means the actual frictional drag force is  )

Looking near resonance for steady state solutions at the driving
frequency, with amplitude ,
phase
lag ,
that is, ,
we find

For a near-resonant driving frequency

and assuming the damping to be sufficiently small that we
can drop the  term along with ,
the
leading order terms give

so the response, the dependence of amplitude  on driving frequency  is to this
accuracy

(Note also that
the resonant frequency is itself lowered by the damping, another second-order
effect we’ll ignore.)
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The rate of absorption of energy equals the frictional
loss.
 The friction force  on the mass moving at
 is doing work at an average rate:

The half width of the resonance curve as a function
of  is given by the damping.  The total area under
the curve is independent
of damping. 

For future use, we’ll write the above equation for the
amplitude  in terms of deviation  from the resonant frequency 

Damped Driven Nonlinear Oscillator:
Qualitative Discussion

We now add to the damped driven linear oscillator a positive
quartic potential term, giving equation
of motion

As mentioned above, for a particle oscillating in this potential
  the frequency
increases with amplitude: the bigger swings encounter a potential
becoming stronger and stronger
than the simple harmonic oscillator.

So if we drive the oscillator from rest at the frequency
that resonates with its small amplitude
oscillations (where the  potential term has negligible effect), as the
amplitude builds up, the
oscillator frequency increases, and the driving force falls
out of sync.

The way to keep the amplitude increasing is evidently to
gradually increase the frequency of the
driving force to match the natural
frequency at the increased amplitude.  (Side note: this is the
principle of the
synchrocyclotron except, in
that case the frequency is lowered as the energy
increases, because the
particles go to bigger and bigger orbits as their mases increase
relativistically.)  This way a small
external driving force (enough to overcome frictional damping) can
maintain a large
amplitude oscillation at a frequency well above the frequency  of small
oscillations.

But what if we apply this high
frequency to a system
initially at rest,
rather than gradually ramping up in
sync with the
oscillations? Then for a
small driving force, we can treat the
system as a
damped simple
harmonic oscillator, and this off-
resonance force will drive
relatively
small amplitude oscillations.
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The bottom line is that for
the same external driving force, with frequency in some range above ,
there can be two possible steady state
oscillation amplitudes, depending on the history of the
system.

Nonlinear Case: Landau’s Analysis

The equation of motion is:

We established earlier that the nonlinear quartic term
brings in a correction to the
oscillator’s
frequency that depends on the amplitude :

in Landau’s notation, 

The equation for the amplitude in the linear case (from the previous section) was, with 
 

For the nonlinear
case, the maximum amplitude will clearly be at the true (amplitude dependent!)
resonance frequency  so with  as before, we now have a cubic
equation for :

.

Note that for small driving force  
 is small (  ) but the

center of the peak has shifted
slightly upwards,
to  that is, at a driving frequency 

 
The cubic equation for  has
only this one real solution.

However, as the driving force is increased, the
coefficients
of the cubic equation change and at
a critical force  two more real roots appear.

The  curve for driving force above  looks like:

So what’s going on here?  For a range of frequencies, including the
vertical dashed red line in the
figure, there appear to be three possible amplitudes
of steady oscillation at one frequency. 
However, it turns out that the middle one is unstable, so will
exponentially deviate, going to one of
the other two, both of which are stable.

If the oscillator is being
driven at , and the driving frequency is gradually increased, the
amplitude
will follow the upper curve to the point , then drop discontinuously to the lower curve.  Further
frequency increase (with the same strength
driving force, of course) will give diminishing amplitude
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of oscillation just as happens for the
ordinary simple harmonic
oscillator on
going away from the resonant
frequency.

If the frequency is now
gradually
lowered, the amplitude gradually will
increase to point , where it will jump
discontinuously to the upper
curve. 
The overall response to driving
frequency is sometimes called

hysteresis, by analogy with the response of a
magnetic material to a varying imposed external field.

To put in some numbers, the
maximum amplitude for any of these curves is when    that
is, at  or

the same result as for small
oscillations.

To find the critical value of
the driving force for which the multiple solutions appear, in the graph
above
that’s when  coincide. That
is,  has coincident
roots.

Differentiating the equation  for amplitude
as a function of frequency (and of course this is at
constant driving force  )

 coincide when the discriminant in the
denominator quadratic is zero, that is, at 
 where 

Putting these values into the equation for  as a function of driving force  the critical driving
force is

Numerical Applet Results

The results above are all from Landau’s book, and are
semiquantitative.  They can easily be
checked using our online applet, which is accurate to one percent or better.  The curves below are
plotted from applet
results, and certainly exhibit the behavior predicted by Landau.

These plots are for 

 For these values,
Landau's  is approximately 0.3. Ours looks a bit more.
Note for  we
show  close to graph peak.
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Frequency Multiples

The above analysis is for
frequencies not very far from . But nonlinear terms can cause
resonance to occur at
frequencies which are rational multiples of .  Landau shows
that a small 

 in the
potential  (so an additional force  in the equation
of motion) can generate a
resonance near .  We’ve only
considered a quartic addition to the potential, , a force 

, we can show that gives a resonance near  and presumably
this is the small bump
near the beginning of the curves above for large driving
strength.

We have   

We’ll write 

Let’s define  by

So .  Then

Then, for ,
the second term, ,
will have a
resonant response, although it is proportional to the (small)
amplitude cubed.
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Similar arguments work for other fractional frequencies.
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